Vayarin® is a prescription medical food that addresses the lipid imbalances associated with ADHD and is for use under physician supervision.
GET YOUR 3RD MONTH FREE**

PROMO CODE: VAYARIN90DAYS

VAYA Direct is a service available to patients with a prescription for VAYA Pharma products, including Vayarin. This convenient service allows you to receive Vayarin affordably and efficiently – shipped directly to your door.

CALL VAYA DIRECT TO ORDER TODAY

844-483-4732

VAYA-DIRECT.com

**Offer available on first prescriptions only; shipping charges may apply.

Vayarin is a prescription medical food that addresses the lipid imbalances associated with ADHD and is for use under physician supervision.

Questions? Learn more at vayarin.com or contact us at 410-297-0020 or contact@vayapharma.com
VAYARIN® IS CLINICALLY SHOWN TO REDUCE ADHD BEHAVIORS, ESPECIALLY IN CHILDREN WITH MORE PRONOUNCED EMOTIONAL DYSREGULATION

Double-Blinded Placebo Control Phase (Week 0-15)
Vayarin 4 capsules per day

Results with the subgroup: Children were included in this subgroup if they had an abnormal baseline score (<62) in at least two out of the following CRS T subscales: Oppositional, Hyperactivity, ADHD-index, or Global: Emotionally liability. #p ≤ 0.15 *p < 0.05 Based on analysis of covariance controlled for gender and age.

VAYARIN® IS CLINICALLY SHOWN TO IMPROVE QUALITY OF LIFE

EMOTIONAL IMPACT ON PARENT
Describes the amount of distress the parents feel regarding their child’s physical health, emotional well-being, attention or learning abilities, social interaction, and general behavior.

FAMILY ACTIVITIES
Describes the frequency of disruption in “usual” family activities

Based on Student’s t-test. Similar results were observed within a subset of hyperactive-impulsive children.
VAYARIN® WORKS

THE VAYARIN® DIFFERENCE

Vayarin® is a specially designed lipid composition that targets the brain.

Its structure combines Phosphatidylserine (PS) and Omega-3, creating PS-Omega-3, a composition that is designed to travel efficiently to the brain and provide vital nutrients needed to manage the lipid deficiency associated with ADHD. This unique structure is what differentiates Vayarin® from other lipid based products.

PS-OMEGA-3 RESULTED IN HIGHER BIOAVAILABILITY TO THE BRAIN

A significant increase of 42% in DHA bioavailability in the brain versus other forms*

*Data based on animal model

**p < 0.05 compared to control, based on one-way ANOVA

Vayarin® gets lipid nutrients to the brain

Vayarin’s unique composition is specifically designed to increase the bioavailability of lipid nutrients across the Blood Brain Barrier (BBB)

Vayarin’s special formulation addresses lipid imbalances that cannot be addressed by modification of the diet alone

Vayarin® Composition
Phosphatidylserine-Omega-3

Fish Oil Triglyceride

VAYARIN®

Polar Head
Serine
Phosphate
Glycerol
Omega-3 LC-PUFA*
Fatty Acid

Vayarin® is a proprietary composition containing phosphatidylserine (PS) conjugated to omega-3 fatty acids enriched with Eicosapentaenoic acid (EPA).

CHEMICAL STRUCTURE

Figure 1. Schematic structure of phosphatidylserine conjugated to EPA.

INGREDIENTS

Phosphatidylserine (PS), Hydroxypropyl methylcellulose, Silicon dioxide. Contains less than 1% ofMixed tocopherols (D-alpha-tocopherol, D-beta-tocopherol, D-gamma-tocopherol, D-delta-tocopherol), Sunflower oil, Ascorbyl palmitate, Rosemary extract (Rosemary leaf, Propylene glycol, Distilled monoglycerides) (preservative), Carmel (color), Titanium dioxide (color).

PHARMACOLOGY

Vayarin® is a prescription medical food intended only for use under medical supervision.

• Mechanism of Action

Phosphatidylserine (PS) in the mammalian nervous system, which is characterized by relatively high levels of omega-3 fatty acids, has been implicated in numerous membrane related functions, such as maintaining the integrity of the membrane fluidity and cell-to-cell recognition and communication [3]. While the exact mechanism by which PS exerts its effects is not fully understood, PS has been found to regulate key proteins in neuronal membranes, including sodium/calcium ATPase [17] and protein kinase C [18, 19] which undertake crucial functions in diverse signal transduction pathways, secretory vesicle trafficking and communication [3]. While the exact mechanism by which PS exerts its effects is not fully understood, PS has been found to regulate key proteins in neuronal membranes, including sodium/calcium ATPase [17] and protein kinase C [18, 19] which undertake crucial functions in diverse signal transduction pathways, secretory vesicle trafficking and communication [3].

• Absorption and Metabolism

Phospholipids can break down to different levels or remain intact and be absorbed in the circulation and brain [26, 27]. Following dietary ingestion of PS, fatty acids esterified to the PS molecule can be hydrolyzed by pancreatic phospholipases and transported to the liver as phospholipid and free fatty acids [28, 29]. Once the lyso-PS is absorbed by the mucosal cells of the intestine, it can be reacylated into PS [30], some of it may be converted into other phospholipids [31]. PS and other phospholipids formed inside the enterocytes can either be transported in the lymphatic circulation as chylomicrons (32, 33) or in the portal circulation, and subsequently enter the liver for processing.

Absorption and distribution to the body. Available evidence indicates that ingested PS reaches the systemic circulation and is incorporated into the phospholipid pool [28].

• Drug Interactions

There are no known contraindications, however Vayarin® could potentially interact with cholinergic and anticholinergic drugs. It is recommended to consult with a physician about Vayarin® interactions that may apply to specific medical conditions.

• Toxicity

The safety profile of PS conjugated to omega-3 (PS-Omega-3) is supported by several pre-clinical studies [34-36]. Repeat-dose safety studies in rats and dogs showed that oral administration of PS-Omega-3 at doses up to 1000 capsules/day (eeup to 0.9 g/day) for 6 months was without any significant adverse effects of toxicological concern [35]. The results of teratogenicity studies in rats at doses up to 200 mg/kg/day and in rats at doses up to 450 mg/kg/day showed that PS-Omega-3 was not an embryo-teratogenic agent, with no increases in fetal macroscopic or microscopic anomalies. The mutagenic potential of PS-Omega-3 was investigated in in vitro and in vivo cell types and revealed no significant findings. In a micronucleus test, PS-Omega-3 was administered to mice at total doses of 30, 150 and 300 mg/kg in two equal doses separated by 24-hours. The results of the study did not reveal any evidence of mutagenic potential or bone marrow toxicity [35].

CLINICAL EXPERIENCE

Vayarin® is a medical food designed as a single-center randomized double blind placebo-controlled study of 15 weeks followed by an open label extension (OLE) of an additional 15 weeks. In the double-blind phase two hundred ADHD children (aged 4–13 years) were randomly assigned to receive Vayarin® or placebo (four capsules a day). In order to evaluate the effect of a reduced dose, an OLE was conducted in 150 participants, assigned to consume two capsules for an additional 15 weeks. The effect of Vayarin® was evaluated vs. placebo using several scales and questionnaires, including the Conners’ parent (CRS-P) and teacher (CRS-T) rating scales and the child health questionnaire (CHQ). Following 15 weeks of Vayarin® administration, significant improvement in both ADHD scores and quality of life were observed in the Vayarin® group as compared to the placebo group, specifically in a subgroup of children with more pronounced hyperactive/impulsive behavior, as well as emotional dysregulation (Fig. 2) [37].

There is a growing body of scientific evidence demonstrating that low levels of certain lipids are associated with Attention Deficit Hyperactivity Disorder (ADHD). While ADHD is a complex disorder, the etiology of which is multi-factorial, ADHD has been shown to be associated with metabolic disturbances such as lipid and glucose metabolism [1, 2]. The abnormalities in lipid metabolism that may occur in ADHD have been associated with increased oxidative stress, higher rates of lipid degradation and decreased synthesis of phospholipids containing omega-3 fatty acids. Reduced levels of phosphatidylserine containing omega-3 fatty acids (PS-Omega-3) have been implicated in membrane structure and function, where they are believed to play an important role in signal transduction pathways, secretory vesicle transport and cell growth and differentiation [4]. Compared to healthy children of the same age, children with ADHD have lower blood levels of omega-3 LC-PUFA [5-13]. These lipids, found also in the brain, play an essential role in brain development and function. In turn, it has been reported that omega-3 fatty acid deficiency is correlated to decreased brain phosphatidylserine, which is mainly in the form of PS-Omega-3 [14, 15].

In turn, it has been reported that omega-3 fatty acid deficiency is correlated to decreased brain phosphatidylserine, which is mainly in the form of PS-Omega-3 [14, 15].

PS-Omega-3 play an important role in the functioning of neuronal membranes, such as signal transduction, secretory vesicle release, cell-to-cell communication, and cell growth regulation [4]. Thus, reduced levels of PS-Omega-3 and omega-3 may represent a complex lipid imbalance playing a role in the etiology/pathogenesis of ADHD and other neuronal disorders. Vayarin® is a proprietary lipid composition of Phosphatidylserine-omega-3 (PS-Omega-3), enriched with EPA. This form has been specially designed to deliver these essential lipids to the brain in order to support and maintain proper brain function. Moreover, the enrichment of EPA in the Vayarin® product allows for better regulation of lipids and targets the specific imbalances that appear to be associated with ADHD [16].

Table 1. Effect of Vayarin® versus Placebo on ADHD symptoms following 15 weeks of administration during the double-blind phase, within the subgroup of participants with more pronounced emotional dysregulation. Values are presented as mean ± SE. P values are based on analysis of covariance controlled for gender, age. * P<0.05, ** P<0.01

CHQ results: Following 15 weeks of administration during the double-blind phase, within the subgroup of participants with more pronounced emotional dysregulation. Values are presented as mean ± SE. P values are based on two-sided t-test for independent samples.

SAFETY ASSESSMENT

Safety was evaluated by clinical laboratory measurements including biochemical and hematomal parameters and by adverse events recording, physical examination and measurement of vital signs and weight [39]. There were no clinically meaningful differences between treatment groups on the tested blood parameters in the double-blind study and within the treatment groups in the open-label extension. In addition, no significant findings were observed during the chemical profile and weight measurements in both study phases. Information regarding adverse events is elaborated in the adverse reaction section [38].

PHYSICIAN SUPERVISION

Vayarin® is a medical food product dispensed by prescription and must be used under physician supervision.

CONTRAINDICATIONS

Vayarin® is not recommended for use in patients with known hypersensitivity (e.g., anaphylactic reaction) to Vayarin® or any of its components.

PRECAUTIONS

• Safety and effectiveness of Vayarin® in pediatric patients or pregnant or lactating patients have not been established. Therefore, Vayarin® is not recommended for these populations.

• Vayarin® contains shellfish (krill) and should be used with caution in patients with known hypersensitivity to shellfish.

CHQ results: Following 15 weeks of administration during the double-blind phase, within the subgroup of participants with more pronounced emotional dysregulation. Values are presented as mean ± SE. P values are based on two-sided t-test for independent samples.

SAFETY ASSESSMENT

Safety was evaluated by clinical laboratory measurements including biochemical and hematomal parameters and by adverse events recording, physical examination and measurement of vital signs and weight [39]. There were no clinically meaningful differences between treatment groups on the tested blood parameters in the double-blind study and within the treatment groups in the open-label extension. In addition, no significant findings were observed during the chemical profile and weight measurements in both study phases. Information regarding adverse events is elaborated in the adverse reaction section [38].

PHYSICIAN SUPERVISION

Vayarin® is a medical food product dispensed by prescription and must be used under physician supervision.

CONTRAINDICATIONS

Vayarin® is not recommended for use in patients with known hypersensitivity (e.g., anaphylactic reaction) to Vayarin® or any of its components.

PRECAUTIONS

• Safety and effectiveness of Vayarin® in pediatric patients or pregnant or lactating patients have not been established. Therefore, Vayarin® is not recommended for these populations.

• Vayarin® contains shellfish (krill) and should be used with caution in patients with known hypersensitivity to shellfish.

Table 1. Effect of Vayarin® versus Placebo on CHQ scores following 15 weeks of administration during the double-blind phase, within the subgroup of participants with more pronounced emotional dysregulation. Values are presented as mean ± SE. P values are based on two-sided t-test for independent samples.
DRUG ABUSE
Vayarin® does not have any known drug abuse or withdrawal effects.

ADVERSE EVENTS
The adverse events of Vayarin® were evaluated in a randomized, double blind, placebo-controlled study of 15 weeks followed by an open label extension of an additional 15 weeks [38].

Adverse events reported during the course of the double-blind phase (table 2): 17 participants from the Vayarin® group and 5 participants from the placebo group were classified by the study physicians as suffering from treatment related, or probably related, adverse events (13 and 5 adverse events, respectively). There were no significant differences between the study groups in either the incidence or number of adverse events recorded (P = 0.648 and P = 0.982, respectively).

Adverse events reported during the course of the open-label extension (table 3): 5 participants reported 7 adverse events that were classified by the study physicians as related or probably related to the study treatment.

REFERENCES
Keep this product out of the reach of children.

WARNING

STORAGE
Usual dose is two capsules daily or as directed by a physician.

fatty-acids on attention-deficit hyperactivity disorder symptoms in

acids in ADHD children: a double-blind placebo-controlled trial followed

by an in utero exposure phase and genotoxicity studies with fish source

Heywood R., C.D.D., Richold M. , Toxicology of a PS preparation from

accessdata.fda.gov/scripts/fdcc/index.cfm?set=GRASNotices&id=311.

phosphatidyl-ethanolamine and phosphatidylserine in rat liver

Bittova, L., R.V. Stahelin, and W. Cho, Roles of ionic residues of the

Wheeler, K. and R. Whittam, ATPase activity of the sodium pump needs

phosphatidylserine accumulation selectively in neuronal tissues. LIPIDS,

acid analysis of adults with and without attention deficit/hyperactivity

Hamilton, L., et al., n-3 fatty acid deficiency decreases

phosphatidylserine accumulation selectively in neural tissues. LIPIDS,

n-3 fatty acid deficiency on phospholipid molecular species composition in

LaChANCE, L., et al., Omega-6 to Omega-3 Fatty Acid Ratio in Patients

Vayarin® and Lipirinen® are registered trademarks of EnzymeSys Ltd.

Vayarin® is an orally administered prescription medical food for the dietary

management of ADHD, is designed to address the distinct, medically
determined nutritional requirements of ADHD, the dietary management of

which cannot be achieved by modification of the normal diet alone.

DRUG ABUSE

ADVERSE EVENTS
The adverse events of Vayarin® were evaluated in a randomized, double blind, placebo-controlled study of 15 weeks followed by an open label extension of an additional 15 weeks [38].

Adverse events reported during the course of the double-blind phase (table 2): 17 participants from the Vayarin® group and 5 participants from the placebo group were classified by the study physicians as suffering from treatment related, or probably related, adverse events (13 and 5 adverse events, respectively). There were no significant differences between the study groups in either the incidence or number of adverse events recorded (P = 0.648 and P = 0.982, respectively).

Adverse events reported during the course of the open-label extension (table 3): 5 participants reported 7 adverse events that were classified by the study physicians as related or probably related to the study treatment.

REFERENCES
Keep this product out of the reach of children.

WARNING

STORAGE
Usual dose is two capsules daily or as directed by a physician.

INDICATION AND USAGE
Vayarin® is an orally administered prescription medical food for the dietary

management of ADHD, is designed to address the distinct, medically
determined nutritional requirements of ADHD, the dietary management of

which cannot be achieved by modification of the normal diet alone.

HOW SUPPLIED
Available as hard shell capsules. Supplied in bottles of 60 capsules.

STORAGE
Store at oral to 77°F (25°C); Protect from light and moisture.

DOSAGE AND ADMINISTRATION
Usual dose is two capsules daily or as directed by a physician.

Gow, R.V., et al., Omega-3 fatty acids are inversely related to callous and

behavioural symptoms of attention deficit hyperactivity disorder in

Antalis, C.J., et al., Omega-3 fatty acid status in attention-deficit/

Young, G.S., N.J. Maharaj, and J.A. Conquer, Blood phospholipid fatty

Young, G. and J. Conquer, Omega-3 fatty acids and neuropsychiatric

to reappraise the role of sugar consumption? Postgrad Med, 2011.

Johnson, R.J., et al., Attention-deficit/hyperactivity disorder: is it time

Mazzari, S., Battistella, A., Phosphatidylserine effects on dopamine

release from striatum synaptosomes. Multidisciplinary Approach to

Vimrani, K., Health benefits of phospholipids: the effects of

phosphatidylcholine and phosphatidylserine on cognitive function.

Chen, J.R., et al., Dietary patterns and blood fatty acid composition in

419-29.

Young, G. and J.A. Conquer, Omega-3 fatty acids and neuropsychiatric

Young, G.S., N.J. Maharaj, and J.A. Conquer, Blood phospholipid fatty

acid analysis of adults with and without attention deficit/hyperactivity

Hamilton, L., et al., n-3 fatty acid deficiency decreases

phosphatidylserine accumulation selectively in neural tissues. LIPIDS,

n-3 fatty acid deficiency on phospholipid molecular species composition in

LaChANCE, L., et al., Omega-6 to Omega-3 Fatty Acid Ratio in Patients

Young, G. and J.A. Conquer, Omega-3 fatty acids and neuropsychiatric

Mitch, E.A., et al., Clinical characteristics and serum essential fatty

acids in ADHD children: a double-blind placebo-controlled trial followed

Gow, R.V., et al., Omega-3 fatty acids are inversely related to callous and

unusual emotional traits in adolescent boys with attention deficit hyperactivity

Gow, R.V., et al., Omega-3 fatty acids are inversely related to callous and

unusual emotional traits in adolescent boys with attention deficit hyperactivity

Mitch, E.A., et al., Clinical characteristics and serum essential fatty

acids in ADHD children: a double-blind placebo-controlled trial followed

Rev 8/16